🧱ComfyUI Block

ComfyUI is an extremely powerful (Stable Diffusion) workflow builder. It has a node-based GUI and is for advanced users.

Advanced/Experimental Contact us or join Discord to report issues

Where to find it in the builder

Sample

There is a new button to edit the workflow in a preview!

You can drag your (API) graph .json in here and run it!

Graph checks

  • ✅ you need to have one SaveImage or VHS_VideoCombine node, the engine will search for this and set it as the last_node_id.

  • ✅ all loadImage image fields need to be valid image links (jpg and png preferred). You can get these by uploading an image with the image uploading block. Downloading videos is not yet supported.

Compatible models

Expand to see all models and checkpoints

ComfyUI Glif Model List

Base Models

SD1.5 (Stable Diffusion 1.5)

  • v1-5-pruned-emaonly.ckpt: Vanilla SD1.5 model

SDXL (Stable Diffusion XL)

  • sd_xl_base_1.0.safetensors: Vanilla SDXL model

  • sd_xl_refiner_1.0.safetensors: SDXL refiner (use only for refinement, not as base model)

SD2.1 (Stable Diffusion 2.1)

Fine-tuned Models

SD1.5-based

  • DreamShaper8_LCM.safetensors: Fast universal model with LCM built-in

  • Realistic_Vision_V5.1_fp16-no-ema.safetensors: Photorealistic model

  • arthemyObjects_v10.safetensors: General object-based model (not focused on human shapes)

SDXL-based

  • albedobaseXL_v12.safetensors: Universally great SDXL model

  • fabricated_reality_sdxl_v14.safetensors: Realistic SDXL model with improvements for eyes, teeth, and hands

ControlNet Models

SD1.5 Compatible

  • control_boxdepth_LooseControlfp16.safetensors: Loose ControlNet model

  • control_sd15_inpaint_depth_hand_fp16.safetensors: Depth estimation for hands

  • control_v11e_sd15_ip2p_fp16.safetensors: Pixel to pixel instruction

  • control_v11e_sd15_shuffle_fp16.safetensors: Image shuffling

  • control_v11f1e_sd15_tile_fp16.safetensors: Image tiling

  • control_v11f1p_sd15_depth_fp16.safetensors: Depth estimation

  • control_v11p_sd15_canny_fp16.safetensors: Canny edge detection

  • control_v11p_sd15_inpaint_fp16.safetensors: Image inpainting

  • control_v11p_sd15_lineart_fp16.safetensors: Lineart

  • control_v11p_sd15_mlsd_fp16.safetensors: Multi-level line segment detection

  • control_v11p_sd15_normalbae_fp16.safetensors: Surface normal estimation

  • control_v11p_sd15_openpose_fp16.safetensors: Human pose estimation

  • control_v11p_sd15_scribble_fp16.safetensors: Scribble-based image generation

  • control_v11p_sd15_seg_fp16.safetensors: Segmentation

  • control_v11p_sd15_softedge_fp16.safetensors: Soft edge image generation

  • control_v11p_sd15s2_lineart_anime_fp16.safetensors: Anime line art generation

  • control_v11u_sd15_tile_fp16.safetensors: Tile-based ControlNet

  • control_v1p_sd15_qrcode_monster.safetensors: Creative QR code generation

  • temporalnetversion2.safetensors: Enhance temporal consistency of generated outputs

SDXL Compatible

  • OpenPoseXL2.safetensors: OpenPose model for SDXL

  • control-lora-canny-rank128.safetensors: Canny edge detection

  • control-lora-depth-rank128.safetensors: Depth estimation

  • control-lora-recolor-rank128.safetensors: Colorize black and white photographs

  • control-lora-sketch-rank128-metadata.safetensors: Color in drawings

  • control_v1p_sdxl_qrcode_monster.safetensors: Creative QR code generation for SDXL

  • controlnet-sd-xl-1.0-softedge-dexined.safetensors: Soft edge preprocessing

  • depth-zoe-xl-v1.0-controlnet.safetensors: Depth estimation

IP-Adapter Models

  • ip-adapter-full-face_sd15.safetensors: Updated version of ip-adapter-face (SD1.5)

  • ip-adapter-plus-face_sd15.safetensors: Face-specific version of ip-adapter-plus (SD1.5)

  • ip-adapter-plus-face_sdxl_vit-h.safetensors: Face-specific version for SDXL

  • ip-adapter-plus_sd15.safetensors: Enhanced version for SD1.5

  • ip-adapter-plus_sdxl_vit-h.safetensors: Enhanced version for SDXL

  • ip-adapter_sd15.safetensors: Base version for SD1.5

  • ip-adapter_sd15_light.safetensors: Lightweight version for SD1.5

  • ip-adapter_sd15_vit-G.safetensors: ViT-G version for SD1.5

  • ip-adapter_sdxl.safetensors: Base version for SDXL

  • ip-adapter_sdxl_vit-h.safetensors: ViT-H version for SDXL

LoRA Models

  • PS1Redmond-PS1Game-Playstation1Graphics.safetensors: PlayStation 1 style (SDXL)

  • PixelArtRedmond-Lite64.safetensors: Pixel art style (SDXL)

  • StickersRedmond.safetensors: Sticker style (SDXL)

  • add-detail-xl.safetensors: Detail enhancer for SDXL

  • add_detail.safetensors: Detail enhancer for SD1.5

  • cereal_box_sdxl_v1.safetensors: Cereal box cover style (SDXL)

  • lcm-lora-sdv1-5.safetensors: LCM for faster sampling (SD1.5)

  • lcm-lora-sdxl.safetensors: LCM for faster sampling (SDXL)

  • more_details.safetensors: Detail and composition enhancer (SD1.5)

  • sd_xl_offset_example-lora_1.0.safetensors: SNR improvement for SDXL

  • sdxl_lightning_2step_lora.safetensors: Fast text-to-image generation (SDXL)

  • sdxl_lightning_4step_lora.safetensors: Fast text-to-image generation (SDXL)

  • sdxl_lightning_8step_lora.safetensors: Fast text-to-image generation (SDXL)

  • theovercomer8sContrastFix_sd15.safetensors: Contrast improvement (SD1.5)

  • theovercomer8sContrastFix_sd21768.safetensors: Contrast improvement (SD2.1)

Important Note: You can add any LoRA from Hugging Face using the "HF Load LoRA" node in our ComfyUI instance. To use this node, you will need:

  • Repo ID (e.g., AP123/Example)

  • File ID (e.g., Lora.safetensors)

Upscale Models

  • 4x_NMKD-Siax_200k.pth: General upscaler

  • ESRGAN_4x.pth: General upscaler

  • RealESRGAN_x2.pth: General upscaler

  • RealESRGAN_x4.pth: General upscaler

VAE (Variational Autoencoder) Models

  • kl-f8-anime2.ckpt: Anime VAE (SD2.1)

  • orangemix.vae.pt: Anime VAE (SD1.5)

  • sdxl_vae.safetensors: Vanilla SDXL VAE

  • vae-ft-mse-840000-ema-pruned.safetensors: Smoother output VAE (SD1.5)

VAE Approximation Models

  • taesd_decoder.pth: Preview decoder for SD1.x

  • taesd_encoder.pth: Preview encoder for SD1.x

  • taesdxl_decoder.pth: Preview decoder for SDXL

  • taesdxl_encoder.pth: Preview encoder for SDXL

CLIP Vision Models

  • CLIP-ViT-H-14-laion2B-s32B-b79K.safetensors: ViT-H model, compatible with all IP-Adapter models

  • CLIP-ViT-bigG-14-laion2B-39B-b160k.safetensors: ViT-G model (referenced in IP-Adapters)

  • clip-vit-large-patch14.bin: ViT-L model (needed for styles model)

  • clip_vision_g.safetensors: Used for ReVision control LoRA model

SAM (Segment Anything Model) Models

  • mobile_sam.pt: MobileSAM

  • sam_vit_b_01ec64.pth: Segment Anything (small)

  • sam_vit_h_4b8939.pth: Segment Anything (large)

  • sam_vit_l_0b3195.pth: Segment Anything (medium)

Embedding Models

  • bad_prompt_version2-neg.pt: Negative prompt embedding for improving hands (SD1.5)

  • easynegative.safetensors: General negative prompt embedding (SD1.5)

  • negative_hand-neg.pt: Negative prompt embedding for hands (SD1.5)

  • ng_deepnegative_v1_75t.pt: General negative prompt embedding (SD1.5)

GLIGEN Model

  • gligen_sd14_textbox_pruned_fp16.safetensors: Enables workflows with annotated bounding boxes (SD1.5)

Grounding DINO Models

  • GroundingDINO_SwinB.cfg.py: Configuration file

  • GroundingDINO_SwinT_OGC.cfg.py: Configuration file for SwinT OGC

  • groundingdino_swinb_cogcoor.pth: GroundingDINO SwinB model

  • groundingdino_swint_ogc.pth: GroundingDINO SwinT OGC model

Background Removal Models

  • u2net.onnx: Background removal model

  • u2net_human_seg.onnx: Human segmentation model for background removal

Ultralytics Models

  • face_yolov8m.pt: YOLO face detector

  • hand_yolov8s.pt: YOLO hand detector

  • person_yolov8m-seg.pt: YOLO person segmentation model

AnimateDiff Models

Various models for generating and controlling animated outputs, including LongAnimateDiff and motion modules

Layer Diffusion Models

Models for applying layer diffusion to base models, including attention and convolution-based models for both SD1.5 and SDXL

Notes

  • Some models may have multiple versions or variants available.

  • Please refer to the specific model's documentation for usage instructions and compatibility information.

  • This list is subject to updates as new models are added or existing ones are modified.

Plugins

Expand to see all plugins

ComfyUI Custom Nodes List

This list contains all the custom nodes installed in our ComfyUI instance. Each entry includes the GitHub repository reference and the specific commit used.

ComfyUI (Base)

  • Reference: https://github.com/comfyanonymous/ComfyUI

  • Commit: 45ec1cbe963055798765645c4f727122a7d3e35e

ControlNet Auxiliary Preprocessors

  • Reference: https://github.com/Fannovel16/comfyui_controlnet_aux

  • Commit: c0b33402d9cfdc01c4e0984c26e5aadfae948e05

Ultimate SD Upscale

  • Reference: https://github.com/ssitu/ComfyUI_UltimateSDUpscale

  • Commit: b303386bd363df16ad6706a13b3b47a1c2a1ea49

FizzNodes

  • Reference: https://github.com/FizzleDorf/ComfyUI_FizzNodes

  • Commit: fd2165162ed939d3c23ab6c63f206ae93457aad8

Video Helper Suite

  • Reference: https://github.com/Kosinkadink/ComfyUI-VideoHelperSuite

  • Commit: e369cac458f977fab0ee5719ce5e4057dc04729f

Inspire Pack

  • Reference: https://github.com/ltdrdata/ComfyUI-Inspire-Pack

  • Commit: 985f6a239b1aed0c67158f64bf579875ec292cb2

Frame Interpolation

  • Reference: https://github.com/Fannovel16/ComfyUI-Frame-Interpolation

  • Commit: 5e11679995c68f33891c306a393915feefe234b5

ComfyMath

  • Reference: https://github.com/evanspearman/ComfyMath

  • Commit: be9beab9923ccf5c5e4132dc1653bcdfa773ed70

smZNodes

  • Reference: https://github.com/shiimizu/ComfyUI_smZNodes

  • Commit: 378ed4567f3290823d5dc5e9556c7d742dc82d23

Advanced ControlNet

  • Reference: https://github.com/Kosinkadink/ComfyUI-Advanced-ControlNet

  • Commit: 33d9884b76e8d7a2024691c5d98308e7e61bf38d

Segment Anything

  • Reference: https://github.com/storyicon/comfyui_segment_anything

  • Commit: ab6395596399d5048639cdab7e44ec9fae857a93

Impact Pack

  • Reference: https://github.com/ltdrdata/ComfyUI-Impact-Pack

  • Commit: 971c4a37aa4e77346eaf0ab80adf3972f430bec1

WAS Node Suite

  • Reference: https://github.com/WASasquatch/was-node-suite-comfyui

  • Commit: 6c3fed70655b737dc9b59da1cadb3c373c08d8ed

ComfyUI Essentials

  • Reference: https://github.com/cubiq/ComfyUI_essentials

  • Commit: bd9b89b7c924302e14bb353b87c3373af447bf55

KJNodes

  • Reference: https://github.com/kijai/ComfyUI-KJNodes

  • Commit: d25604536e88b42459cf7ead9a1306271ed7fe6f

Comfyroll Custom Nodes

  • Reference: https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes

  • Commit: d78b780ae43fcf8c6b7c6505e6ffb4584281ceca

AnimateDiff Evolved

  • Reference: https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved

  • Commit: f9e0343f4c4606ee6365a9af4a7e16118f1c45e1

IPAdapter Plus

  • Reference: https://github.com/cubiq/ComfyUI_IPAdapter_plus

  • Commit: 0d0a7b3693baf8903fe2028ff218b557d619a93d

GlifNodes

  • Reference: https://github.com/glifxyz/ComfyUI-GlifNodes

  • Commit: 5d7e5c80aa175fb6ac860a6d63a15d1f699023fc

Moondream

  • Reference: https://github.com/kijai/ComfyUI-moondream

  • Commit: b97ad4718821d7cee5eacce139c94c9de51268b8

Layer Diffuse

  • Reference: https://github.com/huchenlei/ComfyUI-layerdiffuse

  • Commit: 151f7460bbc9d7437d4f0010f21f80178f7a84a6

rgthree-comfy

  • Reference: https://github.com/rgthree/rgthree-comfy

  • Commit: db062961ed4a3cd92f4eb2b8eeedbcc742b5d5e9

ComfyUI-SUPIR

  • Reference: https://github.com/kijai/ComfyUI-SUPIR

  • Commit: 656e55e8154a2cdfa0738a3474c8aa8e02113e66

  • Author: kaijai

  • Description: SUPIR superresolution

Note:

  • Please refer to the respective GitHub repositories for detailed installation and usage instructions.

  • This list is subject to updates as new nodes are added or existing ones are modified.

Exporting the graph

  1. Enable developer options:

    1. Go to settings:

    2. Enable Enable Dev mode Options:

  2. Export the API graph:

Graph example

This is a graph that should run via our Comfy Block. Mind the cloudinary link for the image field.

expand to show json
{
  "3": {
    "inputs": {
      "seed": 624586032019704,
      "steps": 4,
      "cfg": 1,
      "sampler_name": "lcm",
      "scheduler": "normal",
      "denoise": 1,
      "model": [
        "13",
        0
      ],
      "positive": [
        "6",
        0
      ],
      "negative": [
        "7",
        0
      ],
      "latent_image": [
        "5",
        0
      ]
    },
    "class_type": "KSampler"
  },
  "4": {
    "inputs": {
      "ckpt_name": "sd_xl_base_1.0.safetensors"
    },
    "class_type": "CheckpointLoaderSimple"
  },
  "5": {
    "inputs": {
      "width": 1024,
      "height": 1024,
      "batch_size": 1
    },
    "class_type": "EmptyLatentImage"
  },
  "6": {
    "inputs": {
      "text": "man in space",
      "clip": [
        "10",
        1
      ]
    },
    "class_type": "CLIPTextEncode"
  },
  "7": {
    "inputs": {
      "text": "text, watermark",
      "clip": [
        "10",
        1
      ]
    },
    "class_type": "CLIPTextEncode"
  },
  "8": {
    "inputs": {
      "samples": [
        "3",
        0
      ],
      "vae": [
        "4",
        2
      ]
    },
    "class_type": "VAEDecode"
  },
  "9": {
    "inputs": {
      "filename_prefix": "ComfyUI",
      "images": [
        "8",
        0
      ]
    },
    "class_type": "SaveImage"
  },
  "10": {
    "inputs": {
      "lora_name": "lcm-lora-sdxl.safetensors",
      "strength_model": 1,
      "strength_clip": 1,
      "model": [
        "4",
        0
      ],
      "clip": [
        "4",
        1
      ]
    },
    "class_type": "LoraLoader"
  },
  "12": {
    "inputs": {
      "ipadapter_file": "ip-adapter-plus_sdxl_vit-h.safetensors"
    },
    "class_type": "IPAdapterModelLoader"
  },
  "13": {
    "inputs": {
      "weight": 0.3,
      "noise": 0,
      "weight_type": "original",
      "start_at": 0,
      "end_at": 1,
      "unfold_batch": false,
      "ipadapter": [
        "12",
        0
      ],
      "clip_vision": [
        "15",
        0
      ],
      "image": [
        "16",
        0
      ],
      "model": [
        "10",
        0
      ]
    },
    "class_type": "IPAdapterApply"
  },
  "15": {
    "inputs": {
      "clip_name": "vit-h-image-encoder.safetensors"
    },
    "class_type": "CLIPVisionLoader"
  },
  "16": {
    "inputs": {
      "image": "https://res.cloudinary.com/dzkwltgyd/image/upload/v1699969928/image-input-block-production/rcvznyr9hhewaf9tdnts.jpg",
      "choose file to upload": "image"
    },
    "class_type": "LoadImage"
  }
}

Example workflows

AnimateDiff

This is a basic AnimateDiff (original repo) workflow based on SD15:

GIF outputWorkflow image (drop this in Comfy)

From here on, you could:

  • Add motion LoRAs to control the motion

  • Use an upscaler to make it higher res

  • Use LCM LoRA to make things faster

  • Read how the context options might work: link

IPAdapter with TileControlnet

Txt2Image with SDXL + Upscaler

This workflow uses SDXL to create a base image and then the UltimateSD upscale block. The UltimateSD upscale block works best with a tile controlnet. Therefore, we load in a SD15 checkpoint.

SDXL output (1K)Upscaled (2K)

Last updated